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Introduction

The Almgren-Chriss model

Let Y
t

denote the number of shares the investor holds at time t,
which is assumed to take the form Y

t

= Y

0

�
R
t

0

⇠
u

du. Then the
investor sells at prices S given by

S

t

= s + �W
t

+ ↵
�
Y

t

� Y

0

)� F (⇠
t

), t � 0.

The temporary impact function F is of the form F (x) = �x� ,
where typically � is around 0.6.

The objective for the investor is to maximize

E
⇥
C

Y

T

⇤
� �Var

�
C

Y

T

�
,

where C

Y

T

is the cash position at time T corresponding to the
liquidation strategy Y .



Introduction

This talk
We consider an infinite time-horizon where the investor sells at
prices given by

S

t

= s + L

t

+ ↵
�
Y

t

� Y

0

)� F (⇠
t

), t � 0,

where L

t

is a Lévy process and F is a function satisfying certain
properties.

The objective for the investor is to find a strategy Y which
maximize

E
⇥
� exp

�
�AC

Y

1
�⇤
,

where A denotes the investor’s risk aversion and C

Y

1 denotes the
investor’s cash position at the end of time.



Initial Observations

Observation 1
In the Brownian motion case, the optimal solution to the problem
of maximising the expected exponential utility of the cash position
is equal to the solution to the problem of maximising the
mean-variance criterion over deterministic strategies (the optimal
liquidation trajectories coincide).

Observation 2
For small time-horizons, exponential Lévy models provide a good
fit to observed stock price data (e.g. exponential variance-gamma
or NIG models), and liquidation is normally completed within short
time-horizons.

Observation 3
Models based on Brownian motion underestimate the probability of
large market movements.
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Some Key Questions

Question 1
What conditions do we have to impose on the temporary impact
function F?

Question 2
What is our set of admissible strategies?

Question 3
What are the properties of the optimal liquidation trajectories?

Question 4
Are there any natural relations between the temporary impact
function F and the probability law of the underlying asset?
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Model Description

Assumption

We assume that L is a non-trivial Lévy process such that L
1

has
finite second moment and

�̄ = inf
�
� < 0 | E

⇥
e�L1

⇤
< 1

 
< 0.

Such a Lévy process admits a decomposition

L

t

= µt + �W
t

+

Z

R
x

e
N(t, dx), t � 0,

where µ 2 R and � � 0 are constants, W is a standard Brownian
motion, eN is a compensated Poisson random measure. We let ⌫
denote the Lévy measure associated with L.



Model Description

Admissible strategies

Given an initial share position y , the set A(y) of admissible
strategies consists of adapted, absolutely continuous,
non-increasing processes Y of the form Y

t

= y �
R
t

0

⇠
u

du,
satisfying

Z 1

0

kY
t

k
L

1
(P) dt < 1 if µ 6= 0, (1)

and
Z 1

0

kY
t

k2
L

1
(P) dt < 1 if µ = 0. (2)

We let A
D

(y) denote the set of all deterministic strategies in A(y).



Model Description

The investor sells his shares at prices given by

S

t

= s + L

t

+ ↵
�
Y

t

� Y

0

)� F (⇠
t

), t � 0,

where ↵ � 0 and F : [0,1) ! [0,1) satisfies

(i) F is continuous and continuously di↵erentiable on (0,1);

(ii) F (0) = 0;

(iii) the function x 7! xF (x) is strictly convex on [0,1);

(iv) lim
x!0

xF

0(x) exists;

(v) the function x 7! x

2

F

0(x) is strictly increasing on [0,1), and
tends to +1 as x ! 1.



The Cash Position

For an admissible liquidation strategy Y 2 A(y), the investor’s
cash position at the end of time is

C

Y

1 = c �
Z 1

0

S

t

dY

t

= c + sy � 1

2
↵y2 +

Z 1

0

Y

t� dL

t

�
Z 1

0

⇠
t

F (⇠
t

) dt.

Also, recall that the investor’s optimisation problem is to find a
Y

⇤ 2 A(y), which maximise

E
⇥
� exp

�
�AC

Y

1
�⇤
.



Problem Simplification

It turns out that in order to solve the optimal liquidation problem,
it is su�cient to solve (the derivation is similar to that of Schied,
Schöneborn and Tehranchi (2010))

V (y) = inf
Y2A

D

(y)

Z 1

0

⇢

A

(Y
t

) + A⇠
t

F (⇠
t

)

�
dt,

where


A

(y) = lnE
⇥
exp

�
�AyL

1

�⇤
.

Moreover, if µ > 0, then there are no admissible optimal solutions.
Hence from now on we assume that the asset has a drift µ  0.



The Optimal Liquidation Trajectory

Let G : [0,1) ! [0,1) be the inverse function of x 7! x

2

F

0(x),
and define

⌧ =

Z
y

0

1

G

�
A

(u)

A

� du, y 2 [0, �̄
A

).

Let Y ⇤ be the unique process satisfying
Z

y

Y

⇤
t

1

G

�
A

(u)

A

� du = t, if t  ⌧, and Y

⇤
t

= 0, if t > ⌧.

Then Y

⇤ 2 A
D

(y) is the optimal liquidation strategy, and the
associated speed ⇠⇤ is given by

⇠⇤
t

= G

✓

A

(Y ⇤
t

)

A

◆
, 0  t < ⌧.



Approximation of Exponential Models

Stock price data are typically calibrated to exponential Lévy
models, so we want to derive a linear approximation of such
models. Consider the exponential model

e
S

t

= s exp
�e
L

t

�
+ I

t

,

where I

t

= ↵(Y
t

� Y

0

) + F (⇠
t

) is the price impact at time t, and e
L

is a Lévy process with characteristics (eµ, e�, e⌫) satisfying
de⌫(x) = e

f (x) dx and
R
|z|�1

e2z e⌫(dz) < 1. We want to choose a
Lévy process L such that S given by

S

t

= s + L

t

+ I

t

is the linear approximation of eS .



Approximation of Exponential Models

Solution
Define a measure ⌫ by

⌫(dx) =
1

1 + x

e
f

⇣
ln(1 + x)

⌘
dx , x > �1, x 6= 0,

and set

m = eµ+
e�2

2
+

Z

R
(ez � 1� z1{|z|<1}) e⌫(dz).

Let L be a Lévy process with characteristics (m, e�, ⌫). Then

S

t

= s + sL

t

+ I

t

is the linear approximation of eS .



Example; Variance-Gamma

Consider the case where eL is the variance-gamma process with
parameters (✓, ⇢, ⌘). Then e� = 0, and e⌫ has a density

e
f (z) =

1

⌘|z |e
Cz�D|z|, z 2 R,

where

C =
✓

⇢2
and D =

q
✓2 + 2⇢2

⌘

⇢2
.

Our assumptions are satisfied if D � C > 2, and the cumulant
generating function e admits the expression

e(x) = �1

⌘
ln

✓
1� x

2⇢2⌘

2
� ✓⌘x

◆
.



Example; Variance-Gamma

The Lévy measure for the process L appearing in the expression for
the linear approximation of eS in the VG case is

⌫(dx) =

(
�1

⌘ ln(1+x)

(1 + x)C+D�1

dx , x 2 (�1, 0),
1

⌘ ln(1+x)

(1 + x)C�D�1

dx , x 2 (0,1).

The corresponding 
A

function is

vg
A

(u) = �Amu +

Z 1

�1

⇣
e�Aux � 1 + Aux

⌘
⌫(dx),

where m = e(1).



Examples; Power-Law Temporary Impact
In this case, the temporary impact function takes the form

F (x) = �x� .

For our numerical examples, we choose � = 0.6 and
� = 4.7⇥ 10�5 (which we believe are reasonable in view of
Almgren et. al. (2005) when we work with a daily volatility of
roughly 0.02, take daily volume to be 2⇥ 106 and choose an initial
stock price of s = 100). The function G then takes the form

G (x) =

✓
x

��

◆ 1

�+1

, x � 0,

and the optimal liquidation trajectory is given by

⇠⇤
t

=

✓
vg
sA

(Y ⇤
t

)

A��

◆ 1

�+1

.



Example; Power-Law Temporary Impact

We choose a risk aversion of A = 2, and recall that the una↵ected
price process is given by 100⇥ exp

�e
L

t

�
.

Exponential VG case

We choose eL to be a VG Lévy process with parameters
✓ = �0.002, ⇢ = 0.02 and ⌘ = 0.6, which are typical values for
daily stock price data.

Exponential BM case

In this case we choose eL
t

= µt + �W
t

, where W denotes a
standard BM. We let the parameter µ and � be given by
µ+ �2

2

= e(1) and 2µ+ 4�2

2

= e(2), in which case the VG and the
BM models have the same mean and variance.

Initial position

We assume that the investor initially holds y = 2⇥ 105 number of
shares, which is 10% of daily volume.



Optimal Liquidation Trajectory BM-Case
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If the investor follows the optimal liquidation strategy, it takes
roughly 2⇥ 10�4 days until the time the investor has liquidated
99% of his shares.



Optimal Liquidation Trajectory VG-Case

If the investor follows the optimal liquidation strategy, it takes less
than 2⇥ 10�108263 days until the time he has liquidated 99% of his
shares.

So essentially, the investor liquidates 99% of his shares instantly.

Even if we take � = 1000, the time it takes the investor to
liquidate 99% of a position of 2⇥ 105 number of shares would be
less than 2⇥ 10�168.



Optimal Liquidation Trajectory VG-Case

The previous example was an extreme case with risk aversion
A = 2. Almgren typically assumes a risk aversion in the region
A = 104 to A = 105.

For risk aversions in the region A = 105, the BM and the VG
models will produce liquidation strategies that are comparable.



An Equivalence Relation

Consider the VG model with temporary impact function F

vg

and
the BM model with temporary impact function F

bm

. Then the
optimal liquidation trajectories for the two models coincide i↵

G
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t

)

A

◆
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t

= G
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✓
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sA
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)

A

◆
, t � 0,

where G

vg

is the inverse function of x 7! x

2

F

0
vg

(x) and G

bm

is the
inverse function of x 7! x

2

F

0
bm

(x). We can solve for F
vg

to obtain

F

vg

(x) =

Z
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1
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0
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dz .

If F
bm

(x) ⇠ x

� for x small, then F

vg

(x) ⇠ x

� for x small.



Temporary Impact; VG case
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Conclusion

• We obtain semi-explicit solutions for the optimal liquidation
trajectories when the risk is modelled by a Lévy process.

• We obtain an explicit expression for the connection between
the temporary impact function for the Lévy model and the
temporary impact function for the BM model, such that the
optimal liquidation trajectories are identical.

• There might be a connection between the distribution of the
returns and the temporary impact function, but this would
require further investigations.
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